Blueberries & Exercise Recovery

Researchers are exploring how blueberry consumption may help to address a wide range of health needs, including exercise recovery. To properly recover from exercise after a tough workout, eating a healthy diet is critical. Blueberries have a variety of important nutrients that may help to combat muscle fatigue and promote overall health.

BLUEBERRIES CONTRIBUTE ESSENTIAL NUTRITION INCLUDING:

1. **Manganese**, which can help support energy production and protect cells from oxidative stress. When the body undergoes oxidative stress, it causes inflammation and metabolic damage, which can slow down recovery from muscle strain and injury.

2. **Vitamin C**, which has antioxidant properties that help support immunity and promote healthy skin and connective tissue.

3. Polyphenols including **anthocyanins**, which are compounds that give blueberries their beautiful blue color.

WHAT THE SCIENCE SAYS

New research published in the Journal of the International Society of Sports Nutrition, explores the effect that blueberries may have on enhancing exercise performance and recovery. This study took place in British Columbia, Canada and was conducted on 11 experienced runners.⁴

- “Our research, which has been conducted at sea level as well as simulated altitude, has consistently found that blueberry powder supplementation blunts the increase in blood lactate response to running. This response may have positive implications for longer duration or higher intensity running performances as well as when performing at altitude.”

 — Jason Brandenburg, M.Sc, PhD, Director, School of Kinesiology, University of the Fraser Valley

A research study published in the Journal of Nutrition investigated how consuming a diet enriched with blueberries affects human muscle progenitor function, the cells responsible for muscle growth and repair. This study was conducted on 12 female participants between the ages of 21 and 40, and 10 participants between the ages of 60 and 79.⁵

- #DYK: According to the Centers for Disease Control and Prevention, muscles lose strength, flexibility, and endurance over time. Muscle mass decreases three to five percent every decade after 30 years of age, and that rate increases over age 60. Therefore, strategies to improve muscle progenitor cell proliferation and lower oxidative stress may also help muscle regeneration during the aging process.

References

GrabABlueberryBoost.com